翻訳と辞書
Words near each other
・ Laguna Brava Formation
・ Laguna Caldera
・ Laguna Canyon
・ Laguna Canyon Project
・ Laguna Carapã
・ Laguna Cartagena National Wildlife Refuge
・ Laguna Catemaco
・ Laguna Celeste
・ Laguna City
・ LaGrange Highlands School District 106
・ Lagrange invariant
・ Lagrange inversion theorem
・ Lagrange Island
・ LaGrange Mall
・ Lagrange multiplier
Lagrange multipliers on Banach spaces
・ Lagrange number
・ Lagrange Peak
・ Lagrange Point (video game)
・ Lagrange point colonization
・ Lagrange polynomial
・ Lagrange Prize
・ Lagrange reversion theorem
・ Lagrange stability
・ LaGrange Township
・ Lagrange Township, Bond County, Illinois
・ LaGrange Township, Lorain County, Ohio
・ LaGrange Township, Michigan
・ Lagrange's formula
・ Lagrange's four-square theorem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lagrange multipliers on Banach spaces : ウィキペディア英語版
Lagrange multipliers on Banach spaces
In the field of calculus of variations in mathematics, the method of Lagrange multipliers on Banach spaces can be used to solve certain infinite-dimensional constrained optimization problems. The method is a generalization of the classical method of Lagrange multipliers as used to find extrema of a function of finitely many variables.
==The Lagrange multiplier theorem for Banach spaces==
Let ''X'' and ''Y'' be real Banach spaces. Let ''U'' be an open subset of ''X'' and let ''f'' : ''U'' → R be a continuously differentiable function. Let ''g'' : ''U'' → ''Y'' be another continuously differentiable function, the ''constraint'': the objective is to find the extremal points (maxima or minima) of ''f'' subject to the constraint that ''g'' is zero.
Suppose that ''u''0 is a ''constrained extremum'' of ''f'', i.e. an extremum of ''f'' on
:g^ (0) = \ \subseteq U.
Suppose also that the Fréchet derivative D''g''(''u''0) : ''X'' → ''Y'' of ''g'' at ''u''0 is a surjective linear map. Then there exists a Lagrange multiplier ''λ'' : ''Y'' → R in ''Y'', the dual space to ''Y'', such that
:\mathrm f (u_) = \lambda \circ \mathrm g (u_). \quad \mbox
Since D''f''(''u''0) is an element of the dual space ''X'', equation (L) can also be written as
:\mathrm f (u_) = \left( \mathrm g (u_) \right)^ (\lambda),
where (D''g''(''u''0))(''λ'') is the pullback of ''λ'' by D''g''(''u''0), i.e. the action of the adjoint map (D''g''(''u''0)) on ''λ'', as defined by
:\left( \mathrm g (u_) \right)^ (\lambda) = \lambda \circ \mathrm g (u_).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lagrange multipliers on Banach spaces」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.